【参考咨询】基于深度学习下的高中数学概念教学 ■王 兴

基于深度学习下的高中数学概念教学 ■王 兴

基于深度学习下的高中数学概念教学


■王      兴







摘 要:素质教育改革工作的深入开展使得教学理念与教 学方法都出现了很大的转变。深度学习理论不断完善,同时高 中数学教学工作中对概念教学的重视程度越来越高。如何有 效开展深度学习,高质量开展概念教学工作已经成为非常重要 的课题。本文对高中数学教学工作中如何以深度学习为基础 有效开展概念教学进行简要分析。

关键词:高中数学;概念;深度学习

深度学习的有效开展能够很好地促进学生各项能力的发 展 ,可 以 使 学 生 在 自 主 探 究 的 过 程 中 对 知 识 点 形 成 更 好 的 理 解。概念教学中,深度学习方法的应用,能够让学生更好地掌 握概念的内涵与外延,达到高效学习的目的。

一、深度学习的内涵

深度学习的核心便在于让学生以对概念的记忆与背诵为 基础,实现概念的准确掌握和理解。同时通过深层次思考,分 析数学概念产生的原因和相关概念的发展历程,达到提升学生 数学思想并对学生的数学知识进行拓展的目的。因此可以将 深度学习简单地理解成为深层次学习。深度学习不仅需要从 理 论 上 着 手 ,同 时 还 要 行 动 起 来 ,做 到 数 学 理 论 知 识 的 学 以 致用。

二、有效教学策略

(一)以多样化的方式引入概念,实现深度学习

首 先 ,教 师 可 以 尝 试 使 用 名 人 故 事 作 为 案 例 开 展 教 学 工 作,促进学生更好地开展深度学习。爱因斯坦认为兴趣才是最 好的老师,教师在概念教学中使用名人故事可以有效创设教学 情境,吸引学生的注意力,让学生能够在更加活跃的思维当中 展开概念学习活动,这样便可以促进学生的自主学习意识,使 学生从被动学习向主动学习进行转变。在讲解故事的过程中, 教师可以将数学概念抽象出来,帮助学生更好地理解相关的数 学概念。

例如,在学习等差数列相关知识点时,教师可以讲解高斯

求 1+2+3+…+100 的故事。用这样带有趣味性的故事吸引学生 的注意力,激发学生的学习兴趣。教师要从这一故事当中将高 斯所使用到的数学思想抽象出来,并引导学生对任意等差数列 求和的方法进行自主探究,并让学生尝试对等差数列的前 n 项 和公式进行总结。在这样的学习过程中,学生的数学抽象能力 将会得到更好的培养。

其次,教师可以使用数学文化促进学生的深度学习。数学 思想与精神、方法、语言等元素和它们的形成过程与发展过程

都是数学文化的重要组成。数学文化对于人们的日常生活与 社会发展都起到了非常重要的贡献。教学工作中,教师要积极

利用数学概念的文化意义,促进学生的深度学习,使学生能够 更好地掌握数学概念。


a + b

例如,在学习     ab ≤          这一基本不等式的过程中,教师

2

可以先向学生展示第 24 届国际数学家大会的会标。这一会标

的设计基础便是我国古代数学家赵爽所绘制的弦图。教师可 以向学生简单介绍赵爽的故事,并对学生进行引导,让学生展 开自主探究,从 4 个直角三角形面积与正方形面积的视角,对 勾股数在直角三角形当中所存在的不等关系进行探究,从而更 好地帮助学生形成正确的不等式概念。这种利用数学文化进 行教学引导的方式可以很好地帮助学生进行学习体验,使学生 更好地理解不等式的形成过程,同时还可以对学生的探究能力 与思考能力进行培养。

(二)深度挖掘概念的内涵与外延,实现概念的深度学习

概念便是人们对于客观事物本质属性,在大脑当中形成的 一种反映。这种反映对象所具有的本质数形与特征便是概念 的内涵。而概念所反映的对象所涉及的范围便是概念的外延。 在开展概念教学的过程中,教师必须要让学生对概念的本质、 内涵和外延均实现准确的理解,只有这样才能够让学生更加准 确地掌握概念,才能够让学生更好地将概念应用到数学问题的 解答当中。

例如,在学习三角函数相关概念的过程中,教师便可以设

α 为任意角,以原点为圆心,半径为 r 的圆与角 α 的终边存在交

y

pxy),那么 sinα=   。从这里便可以看出 sinα 其实是一个比

r

值,如果能够确定这个圆,那么 y 将会随着 α 的确定而确定。因

此,如果将 α 作为一个自变量,那么 y 就是关于 α 的函数。同时 yα,因此这个比值便存在一个范围[-1,1]。如果这个圆为单 位圆,那么 y=sinα,这时这个函数便可以称为正弦函数。用这 样的方法便可以将正弦函数以单位圆的方式定义出来,学生也 可以对正弦函数形成更加深刻的理解,同时还能够对在研究三 角函数的过程中,单位圆的使用所能够发挥出来的作用进行更 好的体会。以此为基础可以发现,在研究正弦函数相关概念的 过程中涉及 3 个量:rxy。从这三个变量当中任意取两个变量 都可以得到一个比值,总共可以得到 6 个比值。那么这 6 个比 值便是我们所要研究的基本三角函数,也即是为什么三角函数 会定义出 6 个种类。通过这样的教学方式便可以将三角函数 的外延进行更好的揭示,使学生能够在学习相关知识点的过程 中实现高效率与高质量的学习。

深度学习的有效应用在高中数学教学工作中能够起到非 常明显的促进作用。通过深度学习,学生将会更好地掌握数学 概念,对学习概念形成更加准确的理解。同时也能够让学生的 学习的过程中,对数学概念进行更好的应用。

(作者单位:江苏省靖江市刘国钧中学)